Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Amino-2,2,6,6-tetramethylpiperidin-1oxyl radical (ATEMPO)

Jean-Pierre Legros,* Dominique De Caro and Hélène Casellas

Laboratoire de Chimie de Coordination, UPR CNRS 8241, 205 Route de Narbonne, F-31077 Toulouse, France

Correspondence e-mail: jean-pierre.legros@lcc-toulouse.fr

Received 18 June 2007; accepted 5 July 2007

Key indicators: single-crystal X-ray study; T = 160 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.101; data-to-parameter ratio = 11.9.

The title compound, $C_0H_{10}N_2O$, was studied in the context of nitroxide radicals bearing amino or hydroxy groups as candidates for obtaining thin films of molecular magnets by thermal evaporation in high vacuum on various substrates; the knowledge of its crystal structure is useful for checking the nature and quality of the films. In the crystal structure ATEMPO radicals are linked by weak intermolecular N- $H \cdots O$ hydrogen bonds to form infinite chains running along [010]. Structural features of the radical are similar to those reported for clathrates or adducts involving ATEMPO: the piperidine ring has a chair conformation and the N–O bond length is 1.2870 (13) Å.

Related literature

For the synthesis of ATEMPO, see Rosen (1974). For related structures, see Mazaki et al. (1992); Boubekeur et al. (2006). For literature on thin films of molecular magnets, see Miller & Epstein (1994); Caro et al. (1998).

Experimental

Crystal data

-	
$C_9H_{19}N_2O$	$V = 1024.6 (5) \text{ Å}^3$
$M_r = 171.26$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 5.721 (2) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 12.919 (3) Å	T = 160 (2) K
c = 13.955 (4) Å	$0.31 \times 0.24 \times 0.20$ mm
$\beta = 96.61 \ (4)^{\circ}$	

Data collection

Stoe IPDS imaging plate diffractometer Absorption correction: none 7824 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	167 parameters
$wR(F^2) = 0.101$	All H-atom parameters refined
S = 1.04	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
1989 reflections	$\Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm \AA}^{-3}$

1989 independent reflections

 $R_{\rm int} = 0.041$

1618 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdotsO1^{i}$	0.933 (19)	2.27 (2)	3.153 (2)	158 (3)
Symmetry code: (i) -	$-x + \frac{1}{2}, y - \frac{1}{2}, -z +$	1.		

Data collection: IPDS (Stoe & Cie, 1996); cell refinement: IPDS; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), CAMERON (Pearce & Watkin, 1993) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank warmly Dr Lydie Valade for fruitful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2110).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Boubekeur, K., Syssa-Magalé, J.-L., Palvadeau, P. & Schollhorn, B. (2006). Tetrahedron Lett. 47, 1249-1252.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Caro, J., Fraxedas, J., Jürgens, O., Santiso, J., Rovira, C., Veciana, J. & Figueras, A. (1998). Adv. Mater. 10, 608-610.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Mazaki, Y., Awaga, K. & Kobayashi, K. (1992). Chem. Commun. pp. 1661-1663.

Miller, J. S. & Epstein, A. J. (1994). Angew. Chem. Int. Ed. Engl. 33, 385-415. Pearce, L. J. & Watkin, D. J. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Rosen, G. M. (1974). J. Med. Chem. 17, 358-360.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Stoe & Cie (1996). IPDS and X-RED. Stoe & Cie, Darmstadt, Germany. supplementary materials

Acta Cryst. (2007). E63, o3414 [doi:10.1107/S1600536807032898]

4-Amino-2,2,6,6-tetramethylpiperidin-1-oxyl radical (ATEMPO)

J.-P. Legros, D. De Caro and H. Casellas

Comment

The search for molecular magnets derived from nitroxides and composed exclusively of light elements is an active field (Miller & Epstein, 1994). When prepared as oriented thin films of good optical quality, applications are foreseen in magnetic-optics. Thin films of the nitrophenyl nitroyl nitroxide radical have been obtained by thermal evaporation in high vacuum on glass and cleaved NaCl (001) substrates (Caro *et al.*, 1998). Nitroxide radicals bearing amino or hydroxy groups seem good candidates for processing thin films in which molecule-molecule and molecule-substrate interactions would be favoured by hydrogen bonds. In this context we have prepared the 4-amino-2,2,6,6-tetramethylpiperidine 1-oxyl radical (ATEMPO) according to a procedure described by Rosen (1974). The knowledge of the crystal structure is useful for checking the nature and the quality of the films. Single crystals of the material were obtained by evaporation of an ethanol solution. The molecular structure of ATEMPO is shown in Figure 1, in the solid state the piperidine ring displays a chair conformation. The N—O' bond length is 1.2870 (13) Å. In the crystal structure ATEMPO radicals are linked by weak intermolecular N—H…O hydrogen bonds to form infinite chains running along [010] (Figure 2). The structural features of the isolated ATEMPO radical are similar to those reported for ATEMPO included in clathrates (Mazaki *et al.*, 1992) or adducts (Boubekeur *et al.*, 2006).

Experimental

The title compound was prepared according to a previously published procedure (Rosen, 1974). The resulting solid was dissolved in ethanol. Crystals suitable for X-ray structural study were obtained by evaporation of this ethanol solution.

Refinement

H atoms were clearly located in a difference map. Their positions were refined together with a common $U_{iso}(H)$ which converged to a value of 0.0529 (11) Å². C—H distances are in the range 0.95 (2)–1.03 (2) Å, N—H distances are 0.85 (2) and 0.93 (2) Å, the longest being involved in a weak intermolecular N—H…O hydrogen bond.

Figures

Fig. 1. The molecular structure of ATEMPO, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of ATEMPO. Hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

4-amino-2,2,6,6-tetramethylpiperidine 1-oxyl

Crystal data	
C9H19N2O	$F_{000} = 380$
$M_r = 171.26$	$D_{\rm x} = 1.110 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 943 reflections
a = 5.721 (2) Å	$\theta = 3.1 - 26.1^{\circ}$
b = 12.919 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 13.955 (4) Å	T = 160 (2) K
$\beta = 96.61 \ (4)^{\circ}$	Block, orange
$V = 1024.6 (5) \text{ Å}^3$	$0.31\times0.24\times0.20~mm$
Z = 4	

Data collection

Stoe IPDS imaging plate diffractometer	1618 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.041$
Monochromator: graphite	$\theta_{\text{max}} = 26.1^{\circ}$
T = 160(2) K	$\theta_{\min} = 1.7^{\circ}$
φ scans with 1.5° steps	$h = -7 \rightarrow 7$
Absorption correction: none	$k = -15 \rightarrow 15$
7824 measured reflections	$l = -16 \rightarrow 17$
1989 independent reflections	

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
All H-atom parameters refined
$w = 1/[\sigma^2(F_o^2) + (0.0436P)^2 + 0.2605P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\text{max}} = 0.18 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Experimental. Cooling Device: Oxford Cryosystems Cryostream 600. Imaging plate detector. Frames collected: 133. Seconds exposure per frame: 180. Degrees rotation per frame: 1.5. Crystal-detector distance (mm): 70.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

				-
	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.46460 (17)	0.20119 (8)	0.24316 (7)	0.0417 (3)
N1	0.31364 (17)	0.13055 (8)	0.25724 (7)	0.0274 (3)
N2	-0.2107 (3)	-0.09139 (10)	0.30952 (11)	0.0471 (3)
H2A	-0.114 (3)	-0.1495 (15)	0.3104 (12)	0.0529 (11)*
H2B	-0.317 (3)	-0.0991 (14)	0.2623 (13)	0.0529 (11)*
C1	0.2392 (2)	0.12590 (10)	0.35662 (8)	0.0282 (3)
C2	0.1046 (2)	0.02590 (10)	0.36838 (9)	0.0311 (3)
H21	0.032 (3)	0.0296 (13)	0.4281 (12)	0.0529 (11)*
H22	0.216 (3)	-0.0332 (14)	0.3748 (12)	0.0529 (11)*
C3	-0.0812 (2)	0.00122 (10)	0.28541 (9)	0.0300 (3)
H31	-0.197 (3)	0.0590 (14)	0.2763 (12)	0.0529 (11)*
C4	0.0425 (2)	-0.00881 (11)	0.19495 (9)	0.0329 (3)
H41	-0.073 (3)	-0.0298 (13)	0.1371 (12)	0.0529 (11)*
H42	0.159 (3)	-0.0678 (14)	0.2042 (12)	0.0529 (11)*
C5	0.1728 (2)	0.08874 (11)	0.16905 (8)	0.0308 (3)
C6	0.4609 (3)	0.12765 (14)	0.42811 (10)	0.0406 (4)
H61	0.545 (3)	0.1949 (14)	0.4229 (12)	0.0529 (11)*
H62	0.569 (3)	0.0673 (14)	0.4148 (12)	0.0529 (11)*
H63	0.415 (3)	0.1198 (13)	0.4950 (13)	0.0529 (11)*
C7	0.0874 (3)	0.22064 (11)	0.37282 (11)	0.0396 (3)
H71	0.054 (3)	0.2228 (13)	0.4410 (13)	0.0529 (11)*
H72	-0.070 (3)	0.2211 (13)	0.3335 (12)	0.0529 (11)*
H73	0.175 (3)	0.2829 (14)	0.3599 (12)	0.0529 (11)*
C8	0.0025 (3)	0.17256 (13)	0.12663 (11)	0.0439 (4)
H81	-0.128 (3)	0.1862 (13)	0.1671 (12)	0.0529 (11)*
H82	-0.068 (3)	0.1477 (13)	0.0618 (13)	0.0529 (11)*
H83	0.085 (3)	0.2351 (15)	0.1202 (12)	0.0529 (11)*
C9	0.3451 (3)	0.06182 (15)	0.09690 (10)	0.0466 (4)
H91	0.467 (3)	0.0109 (14)	0.1262 (12)	0.0529 (11)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H92	0.255 (3)	0.0272 (13)	0.0418 (12)	0.0529 (11)*
Н93	0.421 (3)	0.1224 (14)	0.0765 (12)	0.0529 (11)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0385 (5)	0.0427 (6)	0.0452 (6)	-0.0127 (4)	0.0104 (4)	0.0065 (4)
N1	0.0269 (5)	0.0293 (5)	0.0268 (5)	-0.0027 (4)	0.0059 (4)	0.0024 (4)
N2	0.0457 (8)	0.0297 (7)	0.0677 (9)	-0.0092 (6)	0.0139 (6)	-0.0015 (6)
C1	0.0314 (6)	0.0298 (6)	0.0241 (6)	-0.0011 (5)	0.0065 (4)	-0.0024 (5)
C2	0.0384 (7)	0.0285 (7)	0.0272 (6)	0.0001 (6)	0.0073 (5)	0.0045 (5)
C3	0.0311 (6)	0.0230 (6)	0.0369 (7)	-0.0012 (5)	0.0075 (5)	-0.0014 (5)
C4	0.0322 (7)	0.0333 (7)	0.0328 (7)	0.0012 (6)	0.0023 (5)	-0.0078 (5)
C5	0.0292 (6)	0.0398 (7)	0.0234 (6)	0.0023 (5)	0.0026 (5)	0.0012 (5)
C6	0.0383 (8)	0.0540 (9)	0.0287 (7)	-0.0040 (7)	0.0012 (5)	-0.0065 (6)
C7	0.0419 (8)	0.0294 (7)	0.0498 (8)	-0.0019 (6)	0.0148 (7)	-0.0082 (6)
C8	0.0404 (8)	0.0509 (9)	0.0396 (8)	0.0056 (7)	0.0006 (6)	0.0173 (7)
C9	0.0400 (8)	0.0727 (12)	0.0284 (7)	0.0003 (8)	0.0097 (6)	-0.0048 (7)

Geometric parameters (Å, °)

O1—N1	1.2870 (13)	C4—H42	1.009 (18)
N1C5	1.4926 (16)	С5—С9	1.5283 (19)
N1-C1	1.4982 (15)	C5—C8	1.5295 (19)
N2—C3	1.4667 (17)	C6—H61	1.000 (18)
N2—H2A	0.933 (19)	C6—H62	1.025 (18)
N2—H2B	0.851 (19)	С6—Н63	1.003 (17)
C1—C6	1.5209 (19)	C7—H71	0.993 (18)
C1—C2	1.5226 (17)	С7—Н72	1.001 (18)
C1—C7	1.5326 (18)	С7—Н73	0.977 (18)
C2—C3	1.5129 (19)	C8—H81	1.004 (18)
C2—H21	0.974 (17)	C8—H82	1.000 (18)
C2—H22	0.991 (18)	С8—Н83	0.947 (19)
C3—C4	1.5222 (18)	C9—H91	1.011 (18)
С3—Н31	0.995 (18)	С9—Н92	0.984 (17)
C4—C5	1.5285 (19)	С9—Н93	0.955 (18)
C4—H41	1.020 (17)		
01—N1—C5	116.04 (10)	N1—C5—C9	107.31 (11)
O1—N1—C1	115.91 (10)	N1C5C4	109.58 (10)
C5—N1—C1	124.39 (9)	C9—C5—C4	109.71 (12)
C3—N2—H2A	110.1 (11)	N1	108.79 (12)
C3—N2—H2B	104.7 (12)	C9—C5—C8	109.67 (12)
H2A—N2—H2B	106.7 (16)	C4—C5—C8	111.67 (11)
N1—C1—C6	107.59 (10)	C1—C6—H61	109.7 (10)
N1—C1—C2	109.57 (10)	C1—C6—H62	110.1 (9)
C6—C1—C2	109.62 (11)	H61—C6—H62	110.1 (13)
N1—C1—C7	109.32 (11)	С1—С6—Н63	108.7 (10)
C6—C1—C7	109.60 (11)	H61—C6—H63	109.5 (13)

111.07 (11)	H62—C6—H63	108.6 (13)
114.57 (10)	C1—C7—H71	109.9 (10)
109.5 (10)	C1—C7—H72	114.5 (10)
108.7 (10)	H71—C7—H72	105.2 (13)
107.1 (10)	С1—С7—Н73	108.5 (10)
109.7 (10)	H71—C7—H73	108.4 (14)
107.0 (14)	Н72—С7—Н73	110.2 (14)
108.99 (11)	С5—С8—Н81	112.9 (10)
114.60 (11)	С5—С8—Н82	107.1 (10)
107.45 (11)	H81—C8—H82	108.5 (14)
107.2 (10)	С5—С8—Н83	109.7 (11)
109.7 (10)	H81—C8—H83	108.6 (14)
108.8 (10)	H82—C8—H83	110.1 (14)
114.32 (10)	С5—С9—Н91	110.4 (9)
110.9 (9)	С5—С9—Н92	107.3 (10)
108.8 (9)	Н91—С9—Н92	107.3 (14)
108.7 (9)	С5—С9—Н93	111.2 (11)
108.7 (10)	Н91—С9—Н93	109.6 (14)
105.0 (13)	Н92—С9—Н93	110.9 (14)
-48.68 (14)	N2—C3—C4—C5	178.76 (12)
153.81 (12)	C2—C3—C4—C5	-59.98 (14)
-167.80 (10)	O1—N1—C5—C9	48.80 (15)
34.70 (15)	C1—N1—C5—C9	-153.72 (12)
70.27 (13)	O1—N1—C5—C4	167.87 (10)
-87.24 (14)	C1—N1—C5—C4	-34.65 (15)
-46.50 (14)	O1—N1—C5—C8	-69.79 (13)
-164.36 (11)	C1—N1—C5—C8	87.69 (14)
74.38 (14)	C3—C4—C5—N1	46.21 (14)
-175.07 (11)	C3—C4—C5—C9	163.78 (11)
60.21 (14)	C3—C4—C5—C8	-74.41 (15)
	111.07 (11) $114.57 (10)$ $109.5 (10)$ $108.7 (10)$ $107.1 (10)$ $107.0 (14)$ $108.99 (11)$ $114.60 (11)$ $107.45 (11)$ $107.2 (10)$ $109.7 (10)$ $108.8 (10)$ $114.32 (10)$ $110.9 (9)$ $108.8 (9)$ $108.7 (9)$ $108.7 (10)$ $105.0 (13)$ $-48.68 (14)$ $153.81 (12)$ $-167.80 (10)$ $34.70 (15)$ $70.27 (13)$ $-87.24 (14)$ $-46.50 (14)$ $-164.36 (11)$ $74.38 (14)$ $-175.07 (11)$ $60.21 (14)$	111.07 (11) $H62C6H63$ 114.57 (10) $C1C7H71$ 109.5 (10) $H71C7H72$ 108.7 (10) $H71C7H73$ 109.7 (10) $H71C7H73$ 109.7 (10) $H71C7H73$ 107.0 (14) $H72C7H73$ 108.99 (11) $C5C8H81$ 114.60 (11) $C5C8H82$ 107.45 (11) $H81C8H82$ 107.2 (10) $C5C8H83$ 109.7 (10) $H81C8H83$ 108.8 (10) $H82C8H83$ 114.32 (10) $C5C9H91$ 110.9 (9) $C5C9H92$ 108.8 (9) $H91C9H92$ 108.7 (9) $C5C9H93$ 108.7 (10) $H91C9H93$ 105.0 (13) $H92C9H93$ 105.0 (14) $O1N1C5C9$ 74.70 (15) $C1N1C5C9$ 70.27 (13) $O1N1C5C4$ -87.24 (14) $C1N1C5C4$ -87.24 (14) $C1N1C5C8$ -164.36 (11) $C1N1C5C8$ 74.38 (14) $C3C4C5N1$ -175.07 (11) $C3C4C5C8$ 60.21 (14) $C3C4C5C8$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2A····O1 ⁱ	0.933 (19)	2.27 (2)	3.153 (2)	158 (3)
Symmetry codes: (i) $-x+1/2$, $y-1/2$, $-z+1/2$.				

